
CompilerDirected Fine Grain Power Gating for Leakage
Power Reduction in Microprocessor Functional Units

Toshiya Komoda
Research Center for Advanced Science and

Technology, The University of Tokyo
komoda@hal.rcast.utokyo.ac.jp

Hiroshi Sasaki
Research Center for Advanced Science and

Technology, The University of Tokyo
sasaki@hal.rcast.utokyo.ac.jp

Masaaki Kondo
Graduate School of Information Systems,
The University of ElectroCommunications

kondo@is.uec.ac.jp

Hiroshi Nakamura
Research Center for Advanced Science and

Technology, The University of Tokyo
nakamura@hal.rcast.utokyo.ac.jp

ABSTRACT
As semiconductor technology scales down, leakage-power becomes
dominant in the total power consumption of LSI chips. We propose
a compiler technique to turn off functional units that are expected
to be idle for long periods of time for reducing leakage-power using
fine grain power gating technique. Also, we propose a hybrid tech-
nique which combines a compiler and hardware based technique
to maximize the chance of power gating. The results of experi-
ments show that our proposed technique can reduce leakage-power
of functional units for a wide range of break even time (BET) and
applications.

1. INTRODUCTION
Nowadays, reducing the power consumption of microprocessors

is a very important issue not only for embedded systems, but also
for general purpose and high-end processors. Therefore, many
techniques to reduce the power consumption have been developed
so far. Generally, power consumption is consisted of two main
parts, the dynamic power consumption, and the static (leakage)
power consumption. Decades ago, leakage power consumption
was negligible and the main concern was how to reduce the dy-
namic power consumption. However, as the semiconductor pro-
cess size got smaller and smaller, the leakage power consumption
became relatively large and now it is comparable to the dynamic
power consumption.

Many embedded processors provide the mechanism to reduce
leakage energy consumption in the form of sleep mode. In such a
system, the processor core goes into the sleep mode when the oper-
ating system detects a long idle period. These techniques are effec-
tive and widely used to reduce the leakage when the entire proces-
sor core is in idle state. However, larger leakage power consump-
tion means that the leakage can be the dominant factor of power
consumption even when the processor core runs the application.
Considering this situation, we need the technique to reduce the
run-time leakage power consumption in addition to the techniques
applicable to long idle period. Run-time leakage power reduction
techniques have focused primarily on caches, which occupy a large
area on the processor die [5, 9]. On the other hand, it is impor-
tant to reduce the leakage power consumed by functional units for
reduce total leakage power consumption of processors because the
transistors in them are said to consume more leakage power than
those in other part of processors [3]. Recently many approaches
has been investigated to reduce the leakage power consumption of
functional units [8, 11, 15].

Among several circuit techniques which reduce the leakage power,
power gating is known as one of the most useful techniques be-
cause it can reduce most of the leakage with small energy and per-
formance overhead. Power gating reduce the leakage by cutting
off the supply voltage of the target circuit components, making
them “asleep”. The energy overhead is caused by turning on/off
the high threshold voltage power switch transistors to cut off the
supply voltage. If the leakage reduction is less than the overhead,
we cannot gain energy savings. Therefore, the mode control strat-
egy for power-gating should be carefully designed with taking the
energy overhead into account.

There have been several work which attacked on how to detect
the idle period either by software or hardware, and they success-
fully detect the idle periods by simple time based techniques or
compiler analysis. However, there are applications in which the ex-
isting techniques are not effective. In this paper, we propose a com-
piler based method which reduce run-time leakage power consump-
tion of the functional units of the processor by fine grain power
gating with precise idle time prediction. The proposed method can
detect the short idle period derived from the instruction sequence.
We applied an interprocedural analysis in the proposed technique to
precisely predict the idle periods. We also propose a hybrid power
gating control method which combines the compiler based method
and the hardware based method. Through the experiment, we show
that the proposed method is effective for leakage energy reduction
of functional units in a wide range of applications.

The rest of the paper is organized as follows. Section 2 describes
the power gating technique and the architectural support for our
proposed technique. Section 3 gives the details of the proposed
compiler technique and the hybrid technique. Experimental results
of the proposed techniques will be presented in Section 4. Section 5
describes related work and we conclude the paper in Section 6.

2. KEY TECHNOLOGIES
This section describes (2.1) power gating, which is the key cir-

cuit level technique for the proposed compiler based leakage reduc-
tion method and (2.2) the target architecture and the architectural
support which enables the compiler to control power gating.

2.1 Leakage Reduction by Power Gating
Power gating with the MTCMOS technology is a well-known

technique to reduce leakage power. In MTCMOS, power supply to
logic blocks or units, which consist of low-Vth transistors, is gated
by high-Vth power switch transistors. This puts power gated units
into sleep mode and no operation can be performed in these units.

1

circuit
block

GND

virtual GNDsleep
signal

circuit
block

Vdd

Figure 1: Overview of power gating.

activity

sleep
signal

dynamic
power

leakage
power

work

T0 T1 T2 T3 T4

detect-latency

charge-latency
saved-period wakeup-latency

T2’

net-saving
Break Even Time

(BET)

Figure 2: Overhead for mode transition.

The power switch transistors are inserted between a logic block and
the Vdd line or between a logic block and the ground line, or both
of them.

Figure 1 illustrates an overview of power gating when the power
switches are inserted between the logic block and the ground line.
When the sleep signal is asserted, the power switch transistors be-
tween the ground line and the virtual ground (VGND) line becomes
off, and consequently power is gated and leakage current is sup-
pressed. The mode transition incurs the time and energy overheads
due to the sleep signal propagation, power switch driving, and dis-
charging the electrical charge which is stored in parasitic capaci-
tance on VGND line in the sleep mode.

Figure 2 shows the activity and power consumption of the unit
which is the target of power gating. There becomes no workload
to be done on the target unit at time T0 and becomes inactive. The
sleep signal is asserted by detecting the idle period and the unit
becomes power gated at T1. Even if the unit is in the sleep mode,
the leakage power cannot be saved right after the time T1 since the
leakage current flows to the VGND line until it is fully charged.
Then after time T2, leakage power can be saved. The workload
arrives at T3 and the sleep signal is deasserted to wake up the unit.
The restart of the execution is delayed to T4 since the unit needs to
wait for discharging of parasitic capacitance on the VGND line.

In the figure, wakeup-latency indicates the delay for restarting
the execution when the power switches become on. This is the “per-
formance overhead” caused by power gating. Even though there
exists no workload from time T0 to T3, the period in which leak-
age energy is saved is only from T2 to T3 denoted as saved-period.
This is due to the detect-latency which is the required time to de-
tect the idle period for power-gating, and discharge-latency which
is the interval between the time the power-switches turn off and the
time the unit actually starts saving the leakage power. Moreover,
the mode transition introduces dynamic power dissipation which is
the “energy overhead” in power gating. Therefore, actual energy
reduction denoted as net-saving is the amount of energy equiva-
lent to leakage saving for saved-period minus the dynamic power
overhead.

The period in which leakage energy savings balances with the

....

Instruction Decode

Instruction Fetch

Memory Access

Write Back

Sleep

Controller

FP

Adder

FP

Multiplier

Integer

Multiplier

Simple Decode

Instruction

Ground

VDD

Figure 3: Target architecture with power gating control.

dynamic power overhead is called the break even time (BET). Once
the unit switches to the sleep mode, the period in the sleep mode
should be longer than BET, otherwise the energy consumption in-
creases. Therefore, the mode control strategy for power gating
should be carefully designed with taking BET into account. Note
that BET depends on the semi-conductor process technology, tem-
perature of the target unit, the structure of the unit, etc.

2.2 Architectural Support
The target architecture is a low-end processor for an embedded

system which is a single issue, in-order processor with blocking
caches and supports power gating at the functional unit level as
shown in figure3. The sleep controller in the figure is the logic
which determines and sends the sleep/wakeup signal to the target
functional unit. The wakeup-latency of the power gating which
we described in the previous subsection is reported that it can be
controlled to be as few nanoseconds in 90 nm CMOS technology
by optimizing the number of power switches to be inserted per each
target unit [13]. This indicates that the wakeup-latency can be com-
pletely hidden by waking up the functional unit at the fetch stage
when we assume a processor slower than 200 MHz (which is quite
common in the embedded area) because there is at least two cy-
cles (10 ns for 200 MHz processor) from the decode stage to the
execution stage. From this insight, we assume that the functional
units are waken up by the hardware when the instructions which
use them are fetched. Thus, we do not have to wake up the func-
tional units explicitly by software and do not consider about the
performance overhead of power gating in this work.

As similar to the previous proposed compiler based power gating
techniques [11, 12, 14, 15], we support instructions that allow the
compiler to keep functional units to be power on or turn them to be
power off after the execution. Our solution is to add a sleep bit to
each instruction. The sleep bit is a suffix which specifies whether to
“keep on” or “switch off” the functional units used by the instruc-
tion. For example, an integer multiplier instruction with a sleep bit
“off” turns the integer multiplier off after its execution. We have
implemented the sleep-bit to the MIPS ISA which have enough
encoding space to allow us to implement the sleep-bit without in-
creasing the instruction bit-width.

3. PROPOSED COMPILER BASED METHOD

3.1 Overview of the CompilerAssisted Power
Gating Technique

The proposed technique analyzes the assembly code of a pro-
gram and predicts the idle time of each functional unit after exe-

2

cution. According to this information, each functional unit is se-
lected to be kept on or turned off after execution. More precisely,
if the predicted idle time of an instruction is longer than the target
BET, the compiler sets the sleep-bit “switch off” so that the tar-
get functional unit sleeps after the execution. Note that we do not
have to wake up the functional units by instructions because they
are known to be used when the instructions are fetched and will be
waken up by the sleep controller shown in Figure 3. Therefore, our
goal in this section is to determine when to turn the functional units
off by compiler analysis.

The advantage of the proposed technique is that there is no need
to add an additional hardware for prediction because the predic-
tion of the idle length is made statically during the compile time.
Because the BET is predicted to become shorter in the future [3],
applying power gating in a fine grain time scale becomes more ef-
fective. However, in order to apply power gating effectively, we
have to precisely predict the idle time of the target units as men-
tioned in 2.1. When we try to predict this idle time by an additional
hardware, it has to consume additional power throughout the exe-
cution as it must be active all along, and it cannot be ignored. From
this point of view, the proposed technique is a promising approach
to apply fine grain power gating.

Compiler analysis is effective for short stalls (such as a few to
tens of cycles) determined by the instruction sequences. On the
other hand, long stalls are often determined by the long latencies
such as cache misses which occurs dynamically. These idle periods
can be easily detected by hardware and also be effectively utilized
for power gating by just simply sending sleep signals to functional
units although they are impossible to predict by the compiler. From
this insight, we propose a hybrid technique which combines the
compiler assisted power gating and the cache miss based power gat-
ing together. By using both techniques, it becomes possible to cap-
ture both statically and dynamically determined idle periods very
effectively.

Another reason of the long idle period comes from the rare use
of the target unit. These idle periods are difficult to predict by the
compiler without doing the analysis over the procedure calls. Thus,
we also propose a technique to analyze the program in a global
manner by focusing not only inside the basic block or the procedure
but also by analyzing over the procedure calls. By the proposed
analysis, we will be able to predict a long idle time which is a great
chance for power gating. We will describe the analysis in detail in
the next section.

3.2 Compiler Analysis in Detail

3.2.1 Overview
In this section, we describe the compiler analysis method to pre-

dict the idle time of functional units. We propose a method anal-
ogous to data-flow analysis [1], which is conventionally used in
compiler optimization techniques. In this method, we analyze a
control flow graph (CFG), and obtain the expected idle time for
each functional unit. Figure 4 shows an example of the CFG. Each
node except for e represents a single instruction in the code. Node
e is the exit node, which represents the exit point of the procedure.
If we assume that we want to analyze the idle time of the multiplier,
we count the expected number of nodes which lie between the tar-
get multiply instruction and a succeeding multiply instruction for
each multiply instruction in the CFG. Assuming each instruction is
executed in a single cycle, the above average number of nodes gives
the expected idle cycles of the multiplier after the multiply instruc-
tion is executed. Although this assumption that each instruction is
executed in a single cycle is an ideal case in our assumed architec-
ture, it is reasonable because the situation is true when the instruc-

tion is executed without any stalls in the pipeline. Other functional
unit’s idle periods are analyze in the same fashion.

Usually, there are many procedure calls and loop structures in
a typical programs’ source code. The accuracy of the expected
usage interval of functional units can be strongly affected by them.
Therefore, we need to analyze beyond branches or procedure calls
to use global information for precise prediction. We construct a call
graph (CG), which illustrates the relation between procedure calls
for interprocedural analysis.

3.2.2 Intraprocedural Analysis
First of all, we describe the analysis of the procedure which has

no procedure call in it. The basic framework is similar to a data flow
analysis scheme [1]. However, we define real number variables
(RNV), which express the expected usage interval of functional
units, for each node in the CFG instead of typical data-flow val-
ues such as reaching definitions. In addition, a resource-utilization
table is adopted to give the resource requirement for each instruc-
tion.

This analysis depends on information which is computed in the
reverse order of the control flow in a program because we want to
know where the following instruction next use the target unit.

First, we define RNV for the nodes in a CFG.

IND[s], INP [s], OUTD[s], OUTP [s]. (1)

OUTD[s] expresses the expected number of instructions between
the node s and the next instruction which uses the target func-
tional unit. Here the target functional unit means the functional
unit which we want to analyze. Therefore, OUTD[s] indicates the
predicted idle time of the functional unit with the assumption that
every instruction is executed in a single cycle. IND[s] represents
the same meaning value as OUTD[s] defined for the point right
before the node s. OUTP [s] expresses the probability of reaching
to the exit point of the procedure from the point after the node s
without executing the instruction which use the target unit. For ex-
ample, if we assume the branch probability of the instruction a as
1
2

in Figure 4, OUTP [a] will be 1
2

. INP [s] is the same meaning
value as OUTP [s] defined for the point right before node s.

Next, we give the data-flow equation, which gives the constraint
between the variables of nodes. For preparation, we define two
constant values TD[s] and TP [s]. These variables are defined for
each node in the CFG, and their values are determined whether the
node uses the target functional unit.

TD[s] =

{
0 (if s uses the target unit.)
1 (otherwise) (2)

TP [s] =

{
0 (if s uses the target unit.)
1 (otherwise) (3)

TD[s] expresses the expected idle time of the functional unit
from the program point right before the node s to the program point
right after the node s. TP [s] expresses the probability of reaching
to the program point right after the node s from the program point
right before the node s without executing the instruction which uses
the target functional unit. In the intraprocedural analysis of the
procedure which has no procedure call, these two values seem to
be trivial because there is always only one instruction between the
program point right before the node s and the program point right
after the node s. However, there can be several instructions be-
tween the two program point right before and after the node s in
the interprocedural analysis, which we describe later, because of
the presence of the procedure call instructions.

3

By using these values, the data flow equation are given as the
following equations.

IND[s] = TP [s]OUTD[s] + TD[s]

INP [s] = TP [s]OUTP [s]
(4)

OUTD[s] =

q[s]∗IND [ssuc1]+(1−q[s])∗IND [ssuc2]

(if s is branch.)
IND[ssuc]
(otherwise)

(5)

OUTP [s] =

q[s]∗INP [ssuc1]+(1−q[s])∗INP [ssuc2]

(if s is branch.)
INP [ssuc]
(otherwise)

(6)

ssuc indicates the following node after the node s when the node
s is not a branch instruction. ssuc1 and ssuc2 indicate the following
two nodes after the node s when the node s is a branch instruction.
Moreover, q[s] is the probability that the branch node s jumps to
node ssuc1. The values q[s]s are control parameters and can be set
for each branch node respectively. The q[s] values can be obtained
in several ways such as the dynamic profiling technique or static
branch prediction techniques 1.

Finally, we give the initial and boundary values for the iterative
calculation by equations (4)–(6). The initial values for each node s
except the exit node in the CFG are given as below.

IN
(0)
D [s] = TP [s] ∗ TD[s], IN

(0)
P [s] = TP [s],

OUT
(0)
D [s] = 0, OUT

(0)
P [s] = 0.

(7)

Let sexit be the exit node of a procedure in the CFG, the bound-
ary values are given as below.

IN
(b)
D [sexit] = 0, IN

(b)
P [sexit] = 1. (8)

Note that it is not clear whether the algorithm will terminate or
not because it contains a while loop. We can prove that the data
flow values converge to a single solution through the iterative cal-
culation based on equations (4)–(6). We give an brief overview of
the proof below. Fist of all, the one step of the iterative calculation
can be written in a form of a matrix-vector product as below.

V (k+1) = AV (k) +B (9)

Where V is the vector of the data flow values of the nodes in the
CFG, A is the update matrix which is determined by the CFG struc-
ture and the branch probabilities, and B is the constant vector deter-
mined by the character of the nodes. According to the liner algebra,
the iterative calculation based on the equation (9) will converge to
a single solution if and only if the all eigenvalues of the matrix
A are inside the unit circle on the complex plain. We can prove
that all eigenvalues of the matrix A are inside the unit circle on the
complex plain by using the general characteristics of the matrix A.
Therefore, we can conclude that the iterative calculation based on
the equation (9), which is equivalent to the original iterative calcu-
lation based on (4)–(6), will converge.

Let’s look at an example of the iterative calculation. In the Fig-
ure 4, the nodes a, b, c, d, and e represent the instructions. a and d
are branches, c is the instruction which uses the target unit, and e is
the exit node of the procedure. First, we calculate the constant val-
ues TD and TP according to equations (2) and (3). The values are
1We used a fix value 1

2
for q[s] during the evaluation in Section 4

b

d

c

e

target

a

Figure 4: Example of a CFG (instruction C uses the target
unit).

Intraproedural Analysis

INPUT a ontrol ow graph with resoure utilizaton information.

OUTPUT expeted idle yles for eah node in CFG.

IN

P

[s

exit

℄ 0; IN

D

[s

exit

℄ 0 fset boundary values aording to (8)g

for eah node s 2 CFG other than s

exit

do

Set initial values of OUT

P

[s℄, OUT

D

[s℄ fset initial values aording to

(7)g

end for

while hanges to any OUT

P

or OUT

D

our do

for eah node s 2 CFG other than s

exit

do

update IN

D

[s℄; IN

P

[s℄; OUT

D

[s℄; OUT

P

[s℄ falulation based on equa-

tions (4), (5),(6)g

end for

end while

Figure 5: Pseudo code of the intraprocedural analysis algo-
rithm.

TD[A] = TP [A] = 1, TD[B] = TP [B] = 1, TD[C] = TP [C] =
0, TD[D] = TP [D] = 1, and TD[E] = TP [E] = 1. The steps of
iterative calculation with the above values and the equations (4)–
(6) are shown in the table 6. The initial and boundary values are
set by the equations (7) and (8). In the table, each cell represents
(IND, INP , OUTD, OUTP) for each node and each step. The
lowest column gives the theoretical solution which can be obtained
by this calculation. Note that the order of calculation is d, c, b, and
a because the information is propagating backwards in our analy-
sis, and we consider the 4 update operations to the nodes d, c, b,
and a as 1 step. The node e do not have to be updated because it is
the exit point, which gives the boundary values.

We need to perform an infinite time iteration in order to obtain
the exact solution. However, for idle time prediction it is enough to
obtain the integer value. Therefore, the iterative time will not be so
long. The pseudo code of this algorithm is shown in Figure 5.

3.2.3 Interprocedural Analysis
In 3.2.2, we described the analysis for the procedure which does

not include any procedure calls. Here, we describe how to handle
the procedure calls in a procedure, which is often the case in a
typical program. The simplest way to handle the call is to assume
that the instruction which uses the target unit exists at the entrance
of the called procedure. However, it is easy to imagine that it would
result in a very conservative and rough prediction which is far from
the precise value. Therefore, we need to apply the interprocedural
analysis.

In the following, we use a pseudo instruction jal as the procedure
call instruction for explanation. Now we describe the overview
of the interprocedural analysis by the following three steps. (1)
Preprocessing and analyzing the call graph (CG). (2) Seeking the
transfer constant values of each procedure (described later). (3)

4

Node e d c b a
step 0 (0, 1, 0, 0) (1, 1, 0, 0) (0, 0, 0, 0) (1, 1, 0, 0) (1, 1, 0, 0)
step 1 (0, 1, 0, 0) (3/2, 1, 1/2, 1) (0, 0, 0, 1) (5/2, 1, 3/2 , 1) (9/4, 1/2 , 5/4, 1/2)
step 2 (0, 1, 0, 0) (9/4 , 1, 5/4, 1) (0, 0, 0, 1) (13/4, 1, 9/4, 1) (21/8, 1/2, 13/8, 1/2)

...
...

...
...

...
...

result (0, 1, 0, 0) (3, 1, 2, 1) (0, 0, 0, 1) (4, 1, 3, 1) (3, 1/2, 2, 1/2)

Figure 6: A concrete example of the iterative calculation.

Passing the information from the exit point of the program to each
procedure. The overall process is similar to the Region-Based anal-
ysis [1]. We will give a brief view of the three steps.

In the interprocedural analysis, we analyze the procedures as de-
scribed in 3.2.2. The main difference from the single procedure
analysis is that we use the information of other procedures which
has been analyzed for each procedure analysis. In step 2 and 3,
the analysis order of procedures is important because we need to
exchange information properly between procedures. Therefore, we
first analyze the call graph in step 1 to determine the proper analysis
order.

In step 1, we decompose the CG and make a new graph CG’
where each node is a strongly connected component of the original
CG. We decompose the CG into strongly connected components
to handle the loops which are formed by recursive procedures or
procedures which call themselves each other. Next, we give the
post-order label to the nodes in the CG’ through depth first search-
ing. Figure 7 illustrates an example of post order labeling by the
depth first searching. The large circles express the strongly con-
nected components and the small circles in the large circles express
the procedures. We analyze each strongly connected components
in the labeled order in step 2, and analyze in the reverse order in
step 3. We analyze the procedures which are in the same compo-
nent as below. We analyze the procedures in the same component
several times. For example, assume that two procedures A and B
are in the same component. Then, we analyze the procedures as
A-B-A-B. Here we set the number of iterative times to two, which
is the number of procedures in the component, to assure that the
information will be passed over the components.

Next, we describe how to exchange the information between pro-
cedures in step 2. For this purpose, we define the constant val-
ues TD and TP , which were defined for the instructions (nodes) in
CFG, for the procedures. The values are given as bellow.

TD[prc] := IND[sent], TP [prc] := INP [sent] (10)

Where prc is the procedure, sent is the entrance instruction of
procedure prc. We assume that the procedure prc has been already
analyzed for getting the proper IND[sent] and INP [sent] values.
We redefine the constant values TD , TP for the instructions (nodes)
as below.

TD[s] =

 0 (if s uses a target unit.)
TD[prccalled] (if s is “jal”)
1 (otherwise).

(11)

TP [s] =

 0 (if s uses a target unit.)
TP [prccalled] (if s is “jal”)
1 (otherwise)

(12)

prccalled is the procedure which is called by the jal instruction.
In step 2, we analyze the procedures according to the order ob-

tained in step 1. We use the definitions (11) and (12) instead of (2)
and (3) used in the intraprocedural analysis. With the same initial

1

23

45

6

Figure 7: One example of post order labeling in a CG’.

and boundary values given by equations (7) and (8), we seek the so-
lution through an iterative calculation in each procedure. From the
result of them, we can obtain the constant values TD and TP of the
procedures, which will be used in the analysis of other procedures
which call the procedure.

Finally, we decide the expected usage interval of functional units
at each point by passing the boundary values from the exit point of
the program to the exit point of each procedure in reverse order of
the control flow direction in step 3. Here, in order to analyze a cer-
tain procedure, we set the OUTD values of the jal instruction s′call
which calls the procedure to the boundary value IND[sexit] instead
of setting the boundary values given by (8). Note that the instruc-
tion s′call generally exists in another procedure. Therefore, we have
to analyze the procedures in the proper order to pass the boundary
values to each procedure. With the passed boundary values, we
can calculate the correct expected usage interval of the target unit
which considers global information beyond procedures.

In summary, we seek the expected usage interval of functional
units through passing the information between procedures appro-
priately. We analyze each procedure with iteratively using equa-
tions (10)– (12) and the data flow equations (4)– (6). The pseudo
code of interprocedural analysis is shown in Figure 8.

3.3 Hybrid Technique
In this section, we propose a hybrid technique which combines

the static prediction of the compiler based technique described in
Section 3 and the hardware based technique. The hardware based
technique is a simple cache miss detection based technique which
is described in several articles [8, 13]. The advantage of this tech-
nique is that it almost requires no hardware modification to the mi-
croprocessor. In the following, we first present the hardware based
technique in detail and then explain the characteristics and the ad-
vantage of our hybrid technique.

Generally, a cache miss is one of the main source of processor
stalls, which offers many opportunities for power gating. From this
insight, a simple cache miss based idle time prediction technique
has been proposed and implemented as a real LSI chip [13]. In
that technique, when a cache miss occurs, the desired data must
be accessed from the external memory which is usually located off
the processor chip. This accessing to the external memory takes
much longer time than a cache access and require a processor to
stall enough long time to benefit from power gating. Therefore, it
would be effective to send sleep signals to all the functional units
every time a cache miss occurs. The advantage of this cache miss

5

Interproedural Analysis

INPUT a Call Graph CG and ontrol-ows graph 2 CG.

OUTPUT expeted idle yles for eah node in CFGs 2 CG.

/*Preproess a given all graph and determine an analyzing order.*/

Find strongly-onneted omponents in CG.

Redue the graph by treating a strongly-onneted omponent as one

node.

Denote the redued graph as CG

0

.

Perform depth-�rst searh on CG

0

, giving nodes post-order labels.

/*Perform the analysis on CG

0

to ompute transfer onstant values.*/

for P 2 CG

0

aording to the post-order labels do

for i = 0 to the number of proedures in P do

for eah proedure pr 2 P do

do Intraproedural analysis for pr with using T

D

, T

P

of alled

proedures.

end for

end for

end for

/*Perform the boundary value pass to eah proedure*/

for P 2 CG

0

aording to reverse of the post-order. do

for i = 0 to the number of proedures in P do

for eah proedure pr 2 P do

do Intraproedural analysis for pr with usingOUT

D

[s

0

all

℄ as IN

D

[s

exit

℄.

end for

end for

end for

Figure 8: Pseudo code of the interprocedural analysis algo-
rithm

based technique is that it requires minimal hardware modification.
It only requires some logics to trigger the sending of the sleep signal
when a cache miss occurs.

The cache miss based technique must be highly dependent on
the cache architecture, the cache size, the replacement strategy, and
whether it is blocking/non-blocking cache, and other aspects of the
cache configuration. As our target architecture is a simple single
pipeline in-order processor with a traditional 2-level blocking cache
hierarchy, every cache miss causes a processor stall. In this paper,
we evaluate the power gating technique triggered by an L2 cache
miss.

The energy saving achieved by this technique is dependent on
both the cache miss latencies, and the BET. If the cache miss la-
tency is longer than the BET, the power gating triggered by a cache
miss will always result in energy saving. If the cache miss latency
is shorter than the BET, the energy saving depends on the executed
instructions after the cache miss is resolved. When the target func-
tional unit is unused for x cycles after the cache miss resolution, it
will save energy if L2 miss latency + x > BET , otherwise the
functional unit will waste energy. As the memory access latency is
longer than the BET which we are considering in this paper, it is a
good decision to always use the L2 miss based technique.

The compiler analysis is effective for short stalls (a few to tens
of cycles) because these are mostly decided by the instruction se-
quences. On the other hand, long stalls are often caused by cache
misses which occur dynamically. As mentioned in the previous
subsection, these idle periods can be easily detected by hardware
and then power gating can be effectively applied. From this insight
of capturing both short and long idle periods we propose a hybrid
technique which combines the compiler assisted power gating and
the cache miss based power gating together.

Figure9 illustrates the proposed hybrid technique. Here, we fo-
cus on the multiply instruction (mul) for the explanation. In this
example, the compiler compiled the source code by assuming the

BET=20 cycle
:

1. mul.on (keep on after execution)
: 5 cycle

2. mul.off (switch off after execution)
: 25 cycle

3. mul.on
4. : ← cache miss (switch off all functional units)

: 100∼ cycle
:

Figure 9: Power gating control by the hybrid technique

Table 1: Experimental Setup

ISA PISA (MIPS like ISA)
Issue in-order
Fetch & decode &
issue & commit width

1

Combined predictorBranch prediction
(bimodal & 2-lev., 4K-entry)
Int ALU: 1
Int Multiplier/Divider: 1Functional units
FP ALU: 1
FP Multiplier/Divider: 1
32KB, 32B line, 2wayL1 I-cache
1 cycle latency
32KB, 32B line, 2wayL1 D-cache
1 cycle latency
1MB, 128B line, 8wayL2 unified cache
6 cycle latency

Memory latency 100 cycle

BET as 20 cycles. First, the compiler analyzes the distance between
the first mul (1. in the figure) and the second mul (2. in the figure),
and the prediction was 5 cycles, so set the first mul as “mul.on”
which keeps the multiplier on after execution. In the same way, it
analyzes the distance between the second and the third mul, and
set the second mul as “mul.off” because the distance was predicted
as 25 cycles. The compiler sets the sleep-bit in a similar fashion
for all the instructions. Also, when a cache miss occurs (4. in the
figure) the processor stalls for a long time which the compiler can
not predict, but the cache miss based power gating will let all the
functional units asleep and save the leakage power.

4. EXPERIMENT

4.1 Experimental Setup
We used a cycle accurate processor simulator “sim-outorder” in

the SimpleScalar Tool Set [2] for the evaluation. Table 1 shows the
assumptions of the processor configuration. We evaluated the leak-
age energy consumption by using the proposed technique of three
functional units, Integer multiplier, FP ALU, and FP multiplier.

We used nine programs from the SPEC CPU2000 floating point
benchmark suite [7] with the ref input set, and two programs (FFT
and basicmath) from MiBench [6] with the large input set. These
programs selected because they use the above three functional units
frequently so that the fine grain power gating control is needed in
order to effectively reduce the leakage power. The programs were
compiled for PISA (MIPS-like) instruction set architecture (ISA).
The SPEC programs were compiled with the -O2 option and the
MiBench programs were compiled with the -O3 option. We fast-
forwarded one billion instructions and simulated two billion in-
structions for the SPEC benchmarks. The FFT were simulated
from the beginning to completion, and the basicmath was simu-
lated two billion instructions from the beginning. The number of
BET cycles was varied as 5, 20, 40, 60, and 80 throughout the eval-
uation.

We evaluated the leakage energy consumption of each functional
unit with the following power gating control methods.

6

• compiler-inter: Based on the compiler based analysis de-
scribed in Section 3.

• compiler-intra: Based on the compiler based analysis with-
out interprocedural analysis. The effect of procedure calls
were conservatively estimated.

• L2: Based on L2 cache misses.

• hybrid: Hybrid method combining the compiler-inter and L2
method.

• best compiler: The maximum leakage energy reduction achiev-
able by the compiler method if we can perfectly predict the
idle time at compile time.

“Best compiler” shows the maximum leakage reduction through
power gating control by the compiler with sleep bits but does not
sleep even when a L2 cache miss occurs. Therefore, “best com-
piler” does not always achieve the best energy reduction among all
the control methods.

The leakage energy is modeled by the total active cycles of func-
tional units and the power gated cycles. Note that we include the
energy overhead of power gating by taking BET into account. Let
Ltotal be the total leakage energy consumption, w be the total ac-
tive cycles with a certain sleep control method, sn be the number
of active-sleep mode transitions, L be the leakage energy consump-
tion per cycle, and eOH be the energy overhead invoked by a single
sleep. We evaluate Ltotal with the below equation.

Ltotal = w × L+ sn× eOH . (13)

We get the values of w and sn from the simulator for each func-
tional unit. In the above model, BET is expressed as below.

eOH/L = BET. (14)

We need to know the exact values of eOH and L which depend
on the hardware implementation to compute the exact Ltotal, how-
ever, we are evaluating the relative total leakage consumption so
we compute it by using BET which is the ratio of eOH to L.

4.2 Experimental Results
Figure 10–Figure 15 illustrate the percentage of leakage energy

saving of five power gating methods described in the previous sub-
section with BET = 20 and 80. The x-axis represents the bench-
marks (five methods for each benchmark) and the y-axis represents
the relative leakage energy consumption compared to that without
power gating. In the compiler based method, we must assume a
certain BET value to determine where to insert sleep bits at com-
pile time. We assume that the BET in the running environment can
be known at the compile time in this evaluation.

First we focus on the effect of compiler based methods.The com-
piler based method with interprocedural analysis (compiler-inter)
outperforms the compiler based method without interprocedural
analysis (compiler-intra) in all benchmarks and BETs except for
the result of mgrid (FP ALU and FP multiplier, BET=80). The
improvements of interprocedural analysis is large especially in the
results of BET=20, FP multiplier, wupwise, or BET=80, Integer
Multiplier, FFT. Without interprocedural analysis (compiler-intra),
the idle time prediction tends to fall into very conservative one
and we lose many chances to trigger power gating like the case of
BET=20, Integer multiplier, equake. The compiler based method
without interprocedural analysis achieves 52% and 11% leakage
reduction on average at BET=20 and BET=80, respectively. On the
other hand, the compiler based method with interprocedural analy-
sis achieves 86% and 54% leakage reduction on average at BET=20
and BET=80, respectively.

Table 2: The cache miss stall percentage to the total idle time

benchmark %
art 0.80
ammp 0.73
swim 0.34
applu 0.24
equake 0.19
mgrid 0.18
mesa 0.11
wupwise 0.07
apsi 0.05
basicmath 0.05
FFT 0.02

Compiler based method with interprocedural analysis (compiler-
inter) often achieves higher energy saving rate than the L2 miss
based method. However, the L2 miss based method outperforms
the compiler based method with interprocedural analysis in some
case, for example FP ALU in swim, mgrid, and art or FP multiplier
in applu at BET=80. This is primarily because of the characteristics
of these benchmarks. One main reason of this is that L2 cache
misses occur frequently in these benchmarks and the stalls caused
by L2 misses occupy a large portion of the total idle time. Table 2
shows the percentage of the idle time which is caused by cache
misses. The benchmarks which showed good results by applying
L2 miss based method which are swim, mgrid, applu, and art shows
high percentage of idle time due to cache misses.

Figure 16 and Figure 17 illustrates the cumulative percentage of
the idle time length of FP ALU in art and equake respectively. In
Figure 16, two large jumps are observed around 120 (single) and
220 (two consecutive) cycles due to cache misses. L2 miss based
method can effectively detect these idle period so that it achieves
much leakage reduction in art. However in equake, roughly 60%
of the intervals were less than 100. Therefore, the compiler based
method achieves better energy savings at smaller BET as shown in
Figure 10. When the BET gets bigger, the L2 miss based method
becomes advantageous and the energy savings become better than
the compiler based method as shown in Figure11.

Though L2 cache misses occur frequently in ammp, the compiler
based method achieves power reduction comparable to L2 based
method. The reason is that the target functional units are used rarely
in ammp so that there are long idle periods derived from both in-
struction sequences and cache misses. Since our compiler method
can analyze the instruction code beyond procedures, the compiler
based method with interprocedural analysis can detect these idle
periods and achieve large energy savings in ammp.

The hybrid method which combines the compiler based method
and the L2 miss based method outperforms other methods in all
the cases except for three situations when BET=80 (FP ALU of
mgrid and swim and FP multiplier of applu). It achieves 87% and
76% leakage energy reduction on average at BET=20 and BET=80,
respectively. The results show that the compiler based method and
the L2 miss based method can cooperate and reduce the leakage
energy very effectively.

4.3 Sensitivity to Dynamic BET Fluctuations
Considering a more real situation, the value of BET of functional

units changes dynamically mainly due to the fluctuations in temper-
ature during run-time. Therefore, we investigate the sensitivity to
the dynamic BET change of the compiler based method.

Figure 18 and Figure 19 illustrate the evaluation results of the FP
ALU in equake, and Integer multiplier in applu respectively. The
x-axis represents the BET, and the y-axis represents the relative
energy consumption which is the same in the previous figures. In
this experiment, the binary is generated by the compiler assuming

7

1

0.8

1

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0.4

0.6

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0.2

0.4

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0

0.2

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

compiler-inter compiler-intra L2 hybrid best compilercompiler-inter compiler-intra L2 hybrid best compiler

Figure 10: FP ALU, BET = 20

1

(1.2)(1.2)(1.1)

0.8

1

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

(1.2)(1.2)(1.1)

0.6

0.8

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0.4

0.6

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0.2

0.4

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0

0.2

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

compiler-inter compiler-intra L2 hybrid best compilercompiler-inter compiler-intra L2 hybrid best compiler

Figure 11: FP ALU, BET = 80

1

0.8

1

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0.4

0.6

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0.2

0.4

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0

0.2

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

compiler-intra compiler-intra L2 hybrid best compilercompiler-intra compiler-intra L2 hybrid best compiler

Figure 12: FP multiplier, BET = 20

1

0.8

1

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0.6

0.8

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0.4

0.6

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0.2

0.4

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0

0.2

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

compiler-inter compiler-intra L2 hybrid best compilercompiler-inter compiler-intra L2 hybrid best compiler

Figure 13: FP multiplier, BET = 80

1

0.8

1

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0.4

0.6

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0.2

0.4

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0

0.2

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

compiler-intra compiler-intra L2 hybrid best compilercompiler-intra compiler-intra L2 hybrid best compiler

Figure 14: Int multiplier, BET = 20

1

0.8

1

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0.6

0.8

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0.4

0.6

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0.2

0.4

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0

0.2

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

compiler-inter compiler-intra L2 hybrid best compilercompiler-inter compiler-intra L2 hybrid best compiler

Figure 15: Int multiplier, BET = 80

0.9

1

C
u

m
u

la
ti

v
e

 P
e

rc
e

n
ta

g
e

0.8

0.9

C
u

m
u

la
ti

v
e

 P
e

rc
e

n
ta

g
e

0.6

0.7

0.8

C
u

m
u

la
ti

v
e

 P
e

rc
e

n
ta

g
e

0.5

0.6

C
u

m
u

la
ti

v
e

 P
e

rc
e

n
ta

g
e

0.3

0.4

0.5

C
u

m
u

la
ti

v
e

 P
e

rc
e

n
ta

g
e

0.1

0.2

0.3

C
u

m
u

la
ti

v
e

 P
e

rc
e

n
ta

g
e

0

0.1

C
u

m
u

la
ti

v
e

 P
e

rc
e

n
ta

g
e

0

0 50 100 150 200 250 300

C
u

m
u

la
ti

v
e

 P
e

rc
e

n
ta

g
e

250~

Interval CyclesInterval Cycles

Figure 16: Cumulative Percentage of idle period. art, FP ALU.

0.9

1

C
u

m
u

la
ti

v
e

 P
e

rc
e

n
ta

g
e

0.8

0.9

C
u

m
u

la
ti

v
e

 P
e

rc
e

n
ta

g
e

0.6

0.7

0.8

C
u

m
u

la
ti

v
e

 P
e

rc
e

n
ta

g
e

0.5

0.6

C
u

m
u

la
ti

v
e

 P
e

rc
e

n
ta

g
e

0.3

0.4

0.5

C
u

m
u

la
ti

v
e

 P
e

rc
e

n
ta

g
e

0.1

0.2

0.3

C
u

m
u

la
ti

v
e

 P
e

rc
e

n
ta

g
e

0

0.1

C
u

m
u

la
ti

v
e

 P
e

rc
e

n
ta

g
e

0

0 50 100 150 200 250 300

C
u

m
u

la
ti

v
e

 P
e

rc
e

n
ta

g
e

250~

Interval CyclesInterval Cycles

Figure 17: Cumulative Percentage of idle period. equake, FP ALU.

8

1.2

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

1

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0.8

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

compiler-inter05

0.6

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

compiler-inter20

0.4

0.6

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

compiler-inter40

0.2

0.4

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

compiler-inter60

0

0.2

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

compiler-inter80

L2

0

0 20 40 60 80

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

L2

0 20 40 60 80

BETBET

Figure 18: BET Sensitivity. equake, FP ALU

1.2

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

1

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

0.8

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

compiler-inter05

0.6

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

compiler-inter20

0.4

0.6

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

compiler-inter40

0.2

0.4

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

compiler-inter60

0

0.2

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

compiler-inter80

L2

0

0 20 40 60 80

R

e

l

a

t

i

v

e

E

n

e

r

g

y

C

o

n

s

u

m

p

t

i

o

n

L2

0 20 40 60 80

BETBET

Figure 19: BET Sensitivity. applu, FP ALU

a single BET (either 5, 20, 40, 60, or 80) which corresponds to
each lines in the figures. For example, by focusing on the line of
compiler-inter 20 (compiled by assuming a BET=20), we can see
how much leakage power reduction can be achieved when BET
changes. We also show the result of L2 miss based method in the
figures.

In summary, the compiler based method which assumed a small
BET (compiler-inter 5 and compiler-inter 20) tends to achieve larger
energy savings in the small BET region because aggressive power
gating benefits from short idle periods of functional units. How-
ever, because of the frequent mode transitions, the larger the BET,
the larger the energy overhead of power gating becomes very quickly.
Therefore, the compiler based method with small BETs loses its en-
ergy saving effect in the large BET region (Figure 18, 19). On the
other hand, the compiler based method which assumed a large BET
(compiler-inter 60 an compiler-inter 80) and the L2 miss based
method are less sensitive to the BET fluctuations because they cause
only a small number of mode transitions. Therefore, their results
are nearly horizontal in both Figure 18 and Figure 19. However,
these methods can not achieve large energy savings in the small
BET region. A more optimal power gating control method which
can effectively reduce leakage power by adjusting to the dynamic
BET fluctuations is left for future work.

5. RELATED WORK
A lot of research effort has been directed toward reducing static

power consumption so far. Architectural-level leakage power re-
duction techniques have focused primarily on SRAMs (caches and
buffers). Simple time-out based techniques for power gating caches
were developed by many researchers [5, 9]. Beside the leakage re-
duction techniques for caches, researchers have studied to reduce
leakage for logic blocks so far [4, 8, 11].

Dropsho et al. have explored analytical models to determine the
sleep-mode activation policies for the integer functional units using
a dual-threshold domino logic circuits [4]. Hu et al. explored the
potential of similar architectural techniques to reduce leakage by
power gating functional units [8]. Rele et al. presented a compiler
based approach for power gating in superscalar processors [11].
You et al. proposed the compiler analysis framework for estimat-
ing the component activities and sleep instruction scheduling poli-
cies [15]. Nagpal et al. proposed a compiler instruction scheduling
algorithm that assists the hardware based scheme in the context of
VLIW and clustered VLIW architectures [10]. Roy et al. tried to
predict the idle time of functional units in embedded microproces-
sors, analyzing loop structures of embedded applications [12]. Talli
et al. used dynamic profile information to identify the functional
unit idle periods [14].

Our approach calculates the expected idle times for each pro-

gram points which is similar in the work by You et al. [15]. Our
main contribution is that we apply interprocedural analysis. Also,
we effectively combine the static method and the dynamic method
for further leakage reduction.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a fine grain power gating control

method based on a static analysis by the compiler to effectively
reduce the leakage power of microprocessor functional units. The
compiler analyze the distance between nodes in the CFG, and pre-
dict the expected usage interval of the target unit. Based on this
prediction, the compiler inserts a sleep-bit to keep functional units
to be power on or turn them to be power off after the execution.
Also, We proposed and evaluated a hybrid method which combines
the compiler based method and a simple and effective hardware
based method which has no negative impact on the advantage of
compiler based.

In the future, we intend to extend our proposed method in order
to adjust to the dynamic BET fluctuations due to the temperature
fluctuations at run-time.

Acknowledgment
This work was supported in part by Japan Science and Technology
Agency as a CREST research program entitled “Innovative Power
Control for Ultra Low-Power and High-Performance System LSIs”
and by Japan Society for the Promotion of Science Grant-in-Aid
for Scientific Research (A) No.18200002.

REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[2] T. Austin, E. Larson, and D. Ernst. Simplescalar: An
infrastructure for computer system modeling. Computer,
35(2):59–67, 2002.

[3] J. A. Butts and G. S. Sohi. A static power model for
architects. In MICRO 33: Proceedings of the 33rd annual
ACM/IEEE international symposium on Microarchitecture,
pages 191–201, New York, NY, USA, 2000. ACM.

[4] S. Dropsho, V. Kursun, D. H. Albonesi, S. Dwarkadas, and
E. G. Friedman. Managing static leakage energy in
microprocessor functional units. In MICRO 35: Proceedings
of the 35th annual ACM/IEEE international symposium on
Microarchitecture, pages 321–332, Los Alamitos, CA, USA,
2002. IEEE Computer Society Press.

[5] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge.
Drowsy caches: Simple techniques for reducing leakage

9

power. In ISCA ’02: Proceedings of the 29th annual
international symposium on Computer architecture, pages
148–157, Washington, DC, USA, 2002. IEEE Computer
Society.

[6] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. Mibench: A free, commercially
representative embedded benchmark suite. In WWC ’01:
Proceedings of the Workload Characterization, 2001.
WWC-4. 2001 IEEE International Workshop, pages 3–14,
Washington, DC, USA, 2001. IEEE Computer Society.

[7] J. L. Henning. Spec cpu2000: Measuring cpu performance in
the new millennium. Computer, 33(7):28–35, 2000.

[8] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban,
H. Jacobson, and P. Bose. Microarchitectural techniques for
power gating of execution units. In ISLPED ’04:
Proceedings of the 2004 international symposium on Low
power electronics and design, pages 32–37, New York, NY,
USA, 2004. ACM.

[9] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay:
Exploiting generational behavior to reduce cache leakage
power. In ISCA ’01: Proceedings of the 28th annual
international symposium on Computer architecture, pages
240–251, New York, NY, USA, 2001. ACM.

[10] R. Nagpal and Y. N. Srikant. Compiler-assisted leakage
energy optimization for clustered vliw architectures. In
EMSOFT ’06: Proceedings of the 6th ACM & IEEE
International conference on Embedded software, pages
233–241, New York, NY, USA, 2006. ACM.

[11] S. Rele, S. Pande, S. Önder, and R. Gupta. Optimizing static
power dissipation by functional units in superscalar
processors. In CC ’02: Proceedings of the 11th International
Conference on Compiler Construction, pages 261–275,
London, UK, 2002. Springer-Verlag.

[12] S. Roy, S. Katkoori, and N. Ranganathan. A compiler based
leakage reduction technique by power-gating functional units
in embedded microprocessors. In VLSID ’07: Proceedings of
the 20th International Conference on VLSI Design held
jointly with 6th International Conference, pages 215–220,
Washington, DC, USA, 2007. IEEE Computer Society.

[13] N. Seki, L. Zhao, J. Kei, D. Ikebuchi, Y. Kojima,
Y. Hasegawa, H. Amano, T. Kashima, S. Takeda, T. Shirai,
M. Nakata, K. Usami, T. Sunata, J. Kanai, M. Kanai,
M. Kondo, and H. Nakamura. A fine-grain dynamic sleep
control scheme in mips r3000. In ICCD ’08: Proceedings of
the 2008 international conference on computer design, pages
612–617, Washington, DC, USA, 2008. IEEE Computer
Society.

[14] S. Talli, R. Srinivasan, and J. Cook. Compiler-directed
functional unit shutdown for microarchitecture power
optimization. In IPCCC ’07: Proceedings of the 26th IEEE
International performance computing and communications
conference, pages 372–379, Los Alamitos, CA, USA, 2007.
IEEE Computer Society.

[15] Y.-P. You, C. Lee, and J. K. Lee. Compilers for leakage
power reduction. ACM Trans. Des. Autom. Electron. Syst.,
11(1):147–164, 2006.

10

